Bild:Zahnräder Evolventen am Zahnrad.jpg|Evolventen am Zahnrad
</gallery>
</div>
Eine Kreisevolvente wird mit einem Grundkreis und einer Rollgeraden konstruiert. Auf dem Grundkreis wird die Rollgerade abgerollt. Die Bahn, die der Startpunkt beschreibt, ist die Kreisevolvente. In dem Bild kann man die verschiedenen Zwischenpunkte 1 bis 6 sehen. Die Rollgerade ist dabei immer tangential zum Mittelpunkt des Rollkreises. <br />
Bei der Evolventenverzahnung gibt es an jedem Zahn zwei Teile von Kreisevolventen, die den Zahn bilden '''(rot markiert im Bild20-12b)'''. Die Eingriffslinie ist nach dem Verzahnungsgesetz eine Gerade n-n. Sie berührt die beiden Grundkreise tangential zu den Mittelpunkten der Räder, in den Punkten T<sub>1</sub> und T<sub>2</sub>. Der Punkt '''C''' liegt auf dem Punkt, wo sich beide Wälzkreise berühren auf der gedachten Linie zwischen den Mittelpunkten der Zahnräder M<sub>1</sub> und M<sub>2</sub>. Wenn man im Punkt '''C''' eine Linie im 90° Winkel zeichnet, erhält man die Linie '''t-t'''. Der kleine Winkel zwischen den Linien M<sub>1</sub>-M<sub>2</sub> und t-t ist der Eingriffswinkel α. Der Winkel α findet sich auch noch an anderen Stellen im Bild wieder (blau markiert). <br />