Umformen
Inhaltsverzeichnis
Prolog
Einteilung der Umformverfahren nach dem Spannungszustand
DIN 8582:
Zu den wichtigsten Verfahren der Blechumformung gehören Tiefziehen und Streckziehen. Mit diesen Verfahren werden diverse Produkte für die unterschiedlichsten Anwendungsgebiete hergestellt:
- Automobilindustrie –> Türen, Hauben, Kotflügel
- Hausgeräteindustrie –> Spühlbecken, Abzugshauben, Gefriergeräte
- Nahrungsmittelindustrie -> Kochtöpfe, Joghurtbecher, Konserven
- Sonstige Industriebereiche -> Badewannen, Kapseln für Gasflaschen
Verfahren der Blechumformung
Anwendung des Verfahrens Tiefziehen
Tiefziehen ist laut Definition nach DIN 8584 das Zugdruckumformen eines ebenen Blechzuschnittes in einen einseitig offenen Hohlkörper aller Formen ohne gewollte Änderung der Blechdicke, die Wanddicke entspricht der Bodendicke. Beim Tiefziehen im Erstzug entsteht aus dem zugeschnittenen ebenen Blech (ugs. Ronde) das Ziehteil in einem einzigen Prozessschritt. Bei größeren Formänderungen erfolgt der Umformprozess im Weiterzug des im Erstzug Hergestellten Bauteils.
Umformvorgang und Spannungsverteilung
Die einzelnen Phasen beim Ziehvorgang
- die Ronde wird auf der Ziehmatrize zentrisch aufgelegt
- der Niederhalter drückt die Ronde fest auf die Ziehmatrize
- der Niederhalter drückt die Ronde fest auf die Ziehmatrize
- der Ziehstempel zieht die Ronde durch die Öffnung der Ziehmatrize, dadurch wird der äußere Durchmesser der Ronde immer mehr verkleinert. Bis die Ronde vollständig zum Hohlkörper umgeformt ist
- Soll am Hohlkörper ein Kragen verbleiben, so müsste der Tiefzug begrenzt werden.
Entstehung der charakteristischen Dreiecke
Formt man einen Hohlkörper in eine Ronde zurück, dann ergibt sich das der Boden des Napfes mit seinem Radius rn unverändert erhalten bleibt. Sich der Mantel (auch Zarge) des Hohlteils aus einer Vielzahl von Rechtecken der Breite b und der Länge (ra – rn) gebildet werden und zwischen den Rechtecken Dreiecksflächen, den sog. „charaktarischen Dreiecksflächen“ entstehen.
Folge der charakteristischen Dreiecke
Überschüssiger Werkstoff geht nicht verloren, würde aber ohne einen Niederhalter zur Faltenbildung führen. Da ein ausweichen des Werkstoffes nicht möglich ist, wird das Blech zwischen Niederhalter und Ziehring gestaucht, zwischen Ziehring und Stempel wieder gestreckt. Zu beachten ist das die Niederhalterkraft außer der eigentlichen Ziehkraft zusätzlich aufgebracht werden muss. Dies führt zur Erhöhung der gesamt Ziehkraft.
Die Ziehkraft wird vom Materialquerschnitt des Werkstück übertragen und zwar zunächst in Boden nähe. Im fortlaufenden Ziehvorgang erfolgt diese Kraft auch auf den zylindrischen Teil in Bodennähe. Dadurch erfolgt eine Schwächung, kein Verlust, des Materialquerschnittes in Bodennähe
Spannungsverteilung
Tangentiale Stauchung σt Entsteht durch das wandern des Werkstoffes zu immer kleineren Durchmessern. Radiale Zugspannung σr entsteht durch die Zugkraft beim Einziehen der Ronde in den Ziehspalt. Die Druckspannung σd Entsteht durch die Niederhalterkraft, hier wird der Werkstoff auf Druck beansprucht. Die Biegespannung σb entsteht durch das Biegen über die Ziehkante.
Wirkende Kräfte am Napf mit Flansch:
Grundlagen der Blechumformung
Zugversuch, Fließkurve
Mechanische Werkstoffeigenschaften zur Auslegung von Blechumformprozessen werden meistens im Zugversuch ermittelt (Abbildung 7). Zu diesen Werkstoffeigenschaften gehören u.a. die Zugfestigkeit Rm , die Streckgrenze Rp0,2 (bzw. ReH und ReL), die Bruchdehnung A , der Verfestigungsexponent n, der aus der Gleichmaßdehnung Agt ermittelt wird, sowie die Anisotropiekennwerte senkrechte Anisotropie r und ebene Anisotropie Δr .
Datei:Umformen 7.jpgAbbildung 7
Das Spannungs-Dehnungs-Diagramm dient zur Bestimmung der Festigkeits- und Verformungskenngrößen der Werkstoffe. Es kann in verschiedene Bereiche eingeteilt werden. Zu Beginn der Lastaufbringung erfolgt die Dehnung der Probe elastisch, d.h. nach Entlastung nimmt der Stab seine Ausgangslänge L0 wieder ein. Im Diagramm stellt sich dieser Bereich als Gerade dar. Spannung und Dehnung ändern sich verhältnisgleich. Diesen Zusammenhang erkannte erstmals der Physiker Hooke, nach dem dieser Bereich auch Hookescher Bereich des Werkstoffs genannt wird.
Zur Auslegung von Blechumformprozessen reichen die im Zugversuch ermittelten Kennwerte nicht mehr aus, weil hier die Fließspannung kf des sich verfestigenden Werkstoffs zu jedem Umformgrad ϕ bekannt sein muss. Die Fließkurve kf (ϕ) stellt den Zusammenhang zwischen
Fließspannung und Umformgrad dar. Sie kann z.B. mit Hilfe des Stauchversuchs oder des Zugversuchs ermittelt werden. Die Fließspannung ist neben dem Umformgrad auch von dem Werkstoff, der Temperatur und der Umformgeschwindigkeit abhängig. Die Fließspannung ist ein Maß für die benötigte Kraft pro Flächeneinheit, um einen Körper plastisch zu verformen. Sie kann aus dem technischen Spannungsdiagramm σ (ε) unter Anwendung der Volumenkonstanz ermittelt werden.
Umformgrad : ϕ = ln(1+ε) Fließspannung: kf = σ(1+ε)
Anisotropie
Bleche sind oft anisotrop in ihren mechanischen Eigenschaften, weil sie den richtungsabhängigen Herstellungsprozess des Walzens durchlaufen. Die Anisotropie von Blechen hat ihre Ursache in der Gefügestruktur und wird bestimmt durch:
- die Ausprägung der kristallographischen Richtung
- Form, Richtung und Lage von Einschlüssen und Ausscheidungen
- Form, Richtung und Lage der Körner
Diese Ursachen für die Anisotropie bedingen sich oft untereinander schon während der Herstellung des Bleches. Man unterscheidet senkrechte Anisotropie r (bzw. mittlere senkrechte Anisotropie r ) und die ebene Anisotropie Δr .
Senkrechte Anisotropie r
Die senkrechte Anisotropie r ist das Verhältnis der Umformgrade in Breiten- und in Blechdickenrichtung:
Aus diesem Verhältnis lassen sich je nach Größe von r folgende Schlussfolgerungen ziehen:
- r=1 : Es liegt isotropes, plastisches Verhalten vor, weil das Material unter Zugbelastung in Längsrichtung gleichmäßig aus der Breiten- und Dickenrichtung fließt
- r>1 : Es liegt anisotropes, plastisches Verhalten vor, bei dem mehr Material unter Zugbelastung in Längsrichtung aus der Breite in die Länge fließt, als aus der Dicke. In diesem Fall weist das Blech einen größeren Widerstand gegen eine Verringerung aus der Blechdicke auf.
- r<1 : Es liegt anisotropes, plastisches Verhalten vor, bei dem mehr Material aus der Dicke in die Länge fließt, als aus der Breite. Es besteht ein größerer Widerstand des Bleches gegen eine Verminderung aus der Breite
Für Tiefziehbleche, bei denen eine Ausdünnung unerwünscht ist, empfiehlt sich daher eine hohe senkrechte Anisotropie (r > 1,25 ) . Die Betrachtung der senkrechten Anisotropie bezieht sich nur auf eine Ebene des Bleches. Bleche weisen jedoch unterschiedliche
senkrechte Anisotropien in Abhängigkeit von der Walzrichtung auf. Um einen repräsentativen Wert für einen Blechwerkstoff zu erhalten, ist die mittlere senkrechte Anisotropie entscheidend. Diese ergibt sich aus der Aufteilung eines Bleches in zweimal 450 zur Walzrichtung.
Ebene Anisotropie Δr
Die walzrichtungsabhängige senkrechte Anisotropie hat einen Einfluss auf das Formänderungsverhalten des Bleches beim Tiefziehen. Bei einem rotationssymmetrischen Napf, der aus einem anisotropen Blech tiefgezogen wird, ist die Formänderung beispielsweise in 0° zur Walzrichtung aufgrund der Anisotropie anders als in 45° zur Walzrichtung. Es entsteht dabei ein Napf, der Zipfel aufweist.
Werkstoffe der Blechumformung
Arten von Blechen
Aus dem Band geschnittene Tafeln werden als Grobblech bezeichnet, wenn ihre Dicke größer 3,0 mm ist, oder als Feinblech, wenn die Dicke unter 0,3 mm liegt. Während warmgewalztes Band (Warmband) im Dickenbereich des Grob- und Feinbleches erzeugt wird, liegt kaltgewalztes Band (Kaltband) fast ausschließlich als
Feinblech vor. Bei Dicken unter 0,5 mm wird Kaltband als Feinstblech bezeichnet. Kaltband entsteht durch Kaltwalzen von Warmband und wird meistens nach dem Walzprozess einer
Oberflächenveredelung in Form von Verzinken, Veraluminieren, Verzinnen oder Kunststoffbeschichten unterzogen.
Stahl
Anforderungen an Stahlwerkstoffe in der Umformtechnik:
- hohe Festigkeit
- hohes Formänderungsvermögen
- geringe Umformkräfte notwendig
- schweißbar
- hohe Oberflächengüte
- gut lackierbar
Eine besonders günstige Eigenschaftskombination zum Kaltumformen ergibt sich aus einem großen Unterschied zwischen Streckgrenze und Zugfestigkeit (= geringes Streckgrenzenverhältnis Rp0,2/Rm ), einer hohen Gleichmaßdehnung Ag , einem hohen Anisotropiewert r , und einem hohen Verfestigungskoeffizienten n .