Peptidbindung

Aus BS-Wiki: Wissen teilen
Wechseln zu: Navigation, Suche
Peptidbindung
vernetzte Artikel
Proteine Aminosäuren
Lala.jpg

Proteine

Eiweiße, Eiweißstoffe, Eiweißkörper

Auf Berzelius zurückgehende u. seit Mulder (1838) gebräuchliche u. von griech.: proteuein = „der Erste sein“ abgeleitete Sammelbez. für natürlich vorkommende Copolymere, die sich in der Regel aus 20 verschiedenen a-Aminosäuren (im folgenden: AS) als Monomeren zusammensetzen. Von den nahe verwandten Polypeptiden werden sie aufgrund ihrer mol. Größe unterschieden, wenn auch nicht immer streng abgegrenzt: Ab etwa 100 Monomer-Einheiten (AS-Resten) spricht man meist von Proteinen. Es ergeben sich MR von 10.000 bis mehrere Millionen.

Peptide

griech.: peptos = verdaulich

Bez. für durch Peptid-Bindungen säureamid-artig verknüpfte Kondensationsprodukte von Aminosäuren.

Peptidbinung

Eine Peptidbindung (-NH-CO-) ist eine Bindung zwischen der Carboxylgruppe einer und der Aminogruppe einer zweiten Aminosäure.

Zwei Aminosäuren können (formal) unter Wasserabspaltung zu einem Dipeptid kondensieren.

Im Beispiel reagieren zwei Moleküle der einfachsten Aminosäure Glycin zu einem Dipeptid:Amidbinung.png


Struktur der Peptidgruppe

  • Bestimmung der Bildungslänge in Peptidbindung durch Röntgenstrukturanalyse
  • C/N-Bindung ist kürzer als bei Aminen (Doppelbindungscharakter)
  • Peptid-Gruppe ist eben gebaut
  • durch die Delokalisierung der Peptidgruppe wird ein besonders stabiles Verbindungsverhältnis erreicht
  • Amid-Gruppe ist planar gebaut, d. h. alle am Aufbau der der Verbindung beteiligten Atome liegen auf einer Ebene
  • der Diederwinkel liegt daher bei 180°Pfeil.gifAtome können nicht verdreht werden
  • aus Grenzformeln ergibt sich, dass die C/N-Bindung Doppelbindungscharakter hat und so nicht frei drehbarPfeil.gifAtome der Peptidbindung und benachbarte a-C-Atome sind daher in einer EbenePfeil.gifstarre Struktureinheit
  • a-C-Atome können zur C/N-Bindung einer Peptid-Gruppe cis oder trans angeordnet seinPfeil.gifaus sterischen Gründen meistens trans
  • die Ausbildung einer Peptid-Gruppe beeinflusst die Struktur von Proteinen
  • Verformungen sind nur an den a-C-Bindungen möglich, da diesePfeil.giftetraedrisch angeordnet und frei drehbar sind
  • Möglichkeit der Konformation ist deshalb bei Proteinen stark eingeschränkt

Chemie.jpg Grenzformeln Chemie2.jpgdelokalisiertes Elektronensystem

Aufgabe

Glutathion ist ein Tripeptid mit der Aminosäuresequenz (Glu-Cys-Gly). Es schützt in lebenden Zellen Verbindungen vor Oxidation. Dabei wird Glutathion selbst oxidiert. M(Glutathion) = 307 g · mol-1; M(Oxidationsprodukt) = 612 g · mol-1)

a) Gebe die Strukturformel des Tripeptids als Zwitterion an. Beachte dabei, dass Glutaminsäure im Glutathion eine γ-Peptidbindung ausbildet.

b) Leite die Strukturformel des Oxidationsproduktes aus den Angaben der molaren Massen ab.

c) Gebe die Reaktionsgleichung der Oxidation mit Hilfe der Strukturformeln an und benenne den entstehenden Bindungstyp.

Pfeil.gifPeptidbindung: Antwort

Powerpointpräsentation

http://www.bs-wiki.de/mediawiki/images/Peptidbindung1.ppt

Versuch

Biuret-Reaktion

Der klassische Nachweis von Proteinen geschieht mit der Biuret-Reaktion.

Chemikalien: Eiklar-Lösung (Eiklar u. physiologische Kochsalz-Lösung, diverse Lebensmittel (Fleisch, Nudeln, Kartoffeln, Milch u.a.), Natronlauge 1-7%

Geräte: Reagenzglas mit Stopfen, Reagenzglasständer, Reibschale mit Pistill, Tropfpipette, Messpipette 5ml

Durchführung: In das Reagenzglas gibt man etwa 2 mL Eiklar-Lösung. Andere Lebensmittel werden in der Reibeschale zerkleinert, mit wenig Wasser aufgeschlämmt und vorsichtig erwärmt, dann werden etwa 2 mL der Lösung in das Reagenzglas dekantiert. Man gibt nun 2 ml Natronlauge hinzu, verschließt das Glas mit dem Stopfen und schüttelt gut durch. Jetzt werden 3 Tropfen der Kupfersulfat-Lösung zugefügt.

Ergebnis: Bei Anwesenheit von Protein entsteht ein gelber Fleck.

Erklärung

Quellen

  • Chemie heute, Kapitel 19.8, Seite 375
  • Römpp Lexikon Chemie – Version 2.0, Stuttgart/New York: Georg Thieme Verlag 1999
  • Versuch aus: Unterricht Chemie, Band 11: Lebensmittel-Nährstoffe, Heinz Schmidkunz, Karin Schlagheck, Aulis Verlag Deubner & Co KG
  1. Johannes
  2. Mille