Wälzlagerungen: Lösung: Unterschied zwischen den Versionen

Aus BS-Wiki: Wissen teilen
Wechseln zu: Navigation, Suche
('''Lagerung Bandsäge Lösung''': table+ table+ table+ table+ table+ table+)
('''Lagerung Bandsäge Lösung''')
Zeile 338: Zeile 338:
  
 
[[Bild:dyn_aequ_Lagerbelastung.GIF|thumb|center|<div style="text-align: center;">
 
[[Bild:dyn_aequ_Lagerbelastung.GIF|thumb|center|<div style="text-align: center;">
Zum Vergrößern ins Bild klicken<br /> Quelle: Roloff/ Matek, Metalltechnik]]</div>
+
Zum Vergrößern ins Bild klicken<br /> Quelle: Roloff/ Matek, Maschinenelemente]]</div>
  
  

Version vom 11. Oktober 2008, 21:24 Uhr

Berechnung der äquivalenten Lagerbelastung

gegeben:

  • Radialkraft Fr = 5 kN
  • Axialkraft Fa = 2 kN
  • Drehfrequenz n = 250 min-1
  • Rillenkugellager Lagerreihe 62, Bohrungskennzahl 09
  • dynamische Tragzahl nach RM TB 14-2 C = 31 kN
  • statische Tragzahl nach RM TB 14-2 C0 = 20,4 kN

gesucht:

  • äquivalente Lagerbelastung P
  • L10h > 10.000 h ?


Nach TB 14-3a ergeben sich für den Axial- und Radialfaktor Y und X:

  • C0 aus TB 14-2
  • Fa / C0 = 2 kN / 20,4 kN = 0,098 entspricht e nach TB 14-3 ca. 0,29
  • Fa / Fr = 2 kN / 5 kN = 0,4
  • Fa/ Fr > e
  • gewählt wird X = 0,56 und Y = 1,5

Jetzt kann in die Formel eingesetzt werden:

  • P = X · Fr + Y · Fa
  • P = 0,56 · 5 kN + 1,5 · 2 kN
  • P = 5,8 kN

Errechnung der nominellen Lebensdauer

  • C aus TB 14-2 für Lager 6209 = 31 kN
  • p = 3 da Rillenkugellager
  • L10 = (C / P)p
  • (C / P)p wird für L10 in untenstehende Formel eingesetzt:
  • L10h = 106 · L10 / 60 · n
  • L10h = (106/ 60 min · h-1 · 250 min-1) · (31 kN / 5,8 kN)3
  • L10h = 10.179 h
  • L10h ≈ 10.200 h

Alternativrechnung über Kennzahl der dynamischen Beanspruchung

  • für fn nach TB 14-4 fn ≈ 0,51
  • fL = C / P · fn
  • fL = 31 kN / 5,8 kN / 0,51
  • fL ≈ 2,72
  • Nach TB 14-5 bei fL ca. 2,7 ergibt L10h ca. 10.000h.

Antwort: Die gewünschte Lebensdauer von 10.000h wird knapp erreicht.

Lösung RM Aufgabe 14.1

Für das Rillenkugellager DIN 625-6208 sind zu bestimmen:

a) die nominelle Lebensdauer L10 in 106 (Millionen) Umdrehungen bei einer radialen Lagerkraft Fr = 10 kN;

b) die zulässige radiale Lagerkraft Frzul in kN, wenn die halbe unter a) ermittelte Lebensdauer in 106 Umdrehungen erreicht werden soll.
Die Höhe der Lagerkraft ist hinsichtlich der Abnahme der Lebensdauer zu vergleichen und zu kommentieren.


für a)

geg:

Lagerreihe: 62; Bohrungskennzahl: 08

Fr = P = 10 kN

p = 3 (Kugellager)


ges.:

nominelle Lebensdauer L10 in 106 Umdrehungen


Lös.:

lt. RM Fs. 14-12

L10 = (C/P)p

C = 29kN ⇒ nach RM Tb. 14-2 aus Lagerreihe 62 und Bohrungskennzahl 08

L10 = (29 kN / 10 kN)3

L10 = 24,4 · 106 Umdrehungen


für b)

geg:

p = 3 (Kugellager)

C = 29 kN ⇒ nach RM Tb. 14-2 aus Lagerreihe 62 und Bohrungskennzahl 08

L10/2 = 12,2


ges.:

zulässige Lagerkraft Frzul in kN


Lös.:

lt. RM Fs. 14-12

L10/2 = ( C / Frzul )p


3√L10/2 = ( C / Frzul )


Frzul = C / 3√L10/2


Frzul = 29 kN / 3√12,2


Frzul = 12,6 kN


Eine um 25% erhöhte Lagerkraft führt zu einer Halbierung der nominellen Lebensdauer.

Lösung RM Aufgabe 14.2

Welche Hauptabmessungen (Lagerbohrung gleich Wellendurchmesser, Außendurchmesser gleich Gehäusebohrung, Breite) ergeben sich bei einer radialen Lagerkraft Fr von 10 kN, wenn eine nominelle Lebensdauer L10 = 60 · 106 Umdreheungen gefordert wird?

a) Für Rillenkugellager DIN 625 der Reihe 60, 62, 63, 64;

b) Für Zylinderrollenlager DIN 5412 der Reihe NU10, NU2, NU3?
Vergleiche die Hauptabmessungen und Kosten (siehe Web-Links)!


für a)

geg:

P = 10 kN

p = 3 (Kugellager)

L10 = 60 · 106


ges.:

dynamische Tragzahl C in kN


Lös.:

lt. RM Fs. 14-12

L10 = ( C / P )p

3√L10 = C / P

C = 3√L10 · P

C = 3√60 · 10kN

C = 39,148 kN


für b)

geg:

P = 10 kN

p = 1/33 (Zylinderrollenlager)

L10 = 60 · 106


ges.:

zulässige Lagerkraft Frzul in kN


Lös.:

lt. RM Fs. 14-12

L10/2 = (C / Frzul )p

1/33√L10 = C/P

C = 1/33√L10 · P

C = 1/33√60 · 10 kN

C = 34,154kN


Wälzlagerart Reihe Tragzahl Maßreihe d D B r1 Kosten
Rillenkugellager 60 16 10 80 mm 125 mm 22 mm 1,1 mm 24,57 €
62 11 02 55 mm 100 mm 21 mm 1,5 mm 12,83 €
63 08 03 40 mm 90 mm 23 mm 1,5 mm 11,53 €
64 06 04 30 mm 90 mm 23 mm 1,5 mm 21,68 €
Zylinderrollenlager NU10 09 10 45 mm 75 mm 16 mm 1,0 mm 50,28 €
NU02 06 02 30 mm 62 mm 16 mm 1,0 mm 18,18 €
NU03 05 03 25 mm 62 mm 17 mm 1,1 mm 19,85 €

Lösung Übungsaufgabe 8

Welche Hauptabmessungen ergeben sich für ein Rillenkugellager der Reihe 60 bei einer radialen Lagerkraft von 10 kN, wenn eine nominelle Lebensdauer von 108 Umdrehungen gefordert wird?


geg:

P = 10 kN

p = 3 (Kugellager)

L10 = 102 ⇒ 108 / 106 = 108-6 = 102


ges.:

Nenndurchmesser Lagerbohrung d in mm

Lager-Außendurchmesser D in mm

Lagerbreite B in mm

Radius r 1 in mm


Lös.:

lt. RM Fs. 14-12

L10 = (C/P)p

3√L10 = (C/P)

C = 3√L10 · P

C = 3√10210 kN

C = 46,41 kN


Daraus ergibt sich bei Lagerreihe 60: RM Tb. 14-2 ⇒ Maßreihe 10; Bohrungszahl 16


Nach RM Tb. 14-1

d = 16 · 5 = 80 mm

D = 125 mm

B = 22 mm

r 1 = 1,1 mm

Lagerung Bandsäge Lösung

Schritt 1



Auswahl der in Frage kommenden Lagerbauform:



Grundsätzlich sollen zuerst immer Rillenkugellager in Erwägung gezogen werden. In diesem Fall spricht nichts dagegen, denn für unsere Berechnung werden wir eventuell auftretende Axialkräfte vernachlässigen. Sollte die Radialbelastung zu groß sein, kommen auch Zylinderrollenlager in Frage.



Schritt 2



Lagerstelle mit der höchsten Belastung ermitteln:


Lösungen Teil1.GIF



Schritt 3



Für die am stärksten beanspruchte Lagerstelle unter F2 wird die äquivalente Lagerbeanspruchung:



Zum Vergrößern ins Bild klicken
Quelle: Roloff/ Matek, Maschinenelemente



Formel P.GIF



Schritt 4



Berechnung der der dynamischen Tragzahl Cerf :



Formel dyn Trz.GIF


Schritt 5



Auswählen des entsprechenden Lagers:



Für den schon früher festgelegten Achsdurchmesser (d1 = 20mm = d), ergibt sich die Bohrungskennziffer 04.


Aus der Tabelle unten (Rillenkugellager) kann nun das passende Lager ausgewählt werden:
Rillenkugellager DIN 625- 6004 mit C = 9,3 kN.


Damit ergibt sich gleichzeitig der erforderliche Durchmesser der Aufnahmebohrung der Bandrolle:
D = 42mm


Die Breite des Lagers lässt sich auf die gleiche Art wie vor ermitteln:
B = 12mm


Der Einfachheit halber und aus preislichen Gründen wird das Lager für beide Lagerstellen verwendet.