Konzentration: Unterschied zwischen den Versionen

Aus BS-Wiki: Wissen teilen
Wechseln zu: Navigation, Suche
(Volumen-Konzentration σ)
Zeile 64: Zeile 64:
 
|}
 
|}
  
Bei sehr geringen Konzentrationen sind neben den oben erwähnten K.- Angaben noch weitere in Gebrauch, z. B. [[ppm]] o. [[ppb]].
+
Bei sehr geringen Konzentrationen sind neben den oben erwähnten K.- Angaben noch weitere in Gebrauch, z.&nbsp;B. <sup>0</sup>/<sub>00</sub> (<sup>1</sup>/<sub>1.000</sub>), [[ppm]] (<sup>1</sup>/<sub>1.000.000</sub>) o. [[ppb]] (<sup>1</sup>/<sub>1.000.000.000</sub>).
  
 
Bezieht man bei der Berechnung der Konzentration (4b) das Stoffvolumen ''V''(X)'' auf das Gesamtvolumen ''V''<sub>ges</sub> aller Komponenten ''vor dem Mischen'', erhält man wegen des Volumenschwundes beim Mischen einen von der Volumen-Konzentration abweichenden Wert, den '''Volumenanteil'''.
 
Bezieht man bei der Berechnung der Konzentration (4b) das Stoffvolumen ''V''(X)'' auf das Gesamtvolumen ''V''<sub>ges</sub> aller Komponenten ''vor dem Mischen'', erhält man wegen des Volumenschwundes beim Mischen einen von der Volumen-Konzentration abweichenden Wert, den '''Volumenanteil'''.

Version vom 13. Februar 2012, 00:19 Uhr

Konzentration
vernetzte Artikel
Stöchiometrie quantitative Analyse

"Alles eine Frage der Dosis!"

Im Alltag stellt sich häufig die Frage nach Grenzwerten: Was gilt als harmlos, WIEVIEL ist bedenklich?

"Die Dosis macht das Gift" ist eine Kernaussage der Chemie. Untersucht man z. B. im Rahmen einer quantitativen Analyse eine Probe hinsichtlich seiner Zusammensetzung, müssen die Inhaltsstoffe nach ihrem relativen Anteil bestimmt werden, also der Konzentration.

Die Konzentrationsangabe von Lösungen kann hierbei in unterschiedlicher Weise erfolgen:

Übliche Konzentrationsangaben

Stoffmengenkonzentration c

Die Stoffmengenkonzentration (veraltet: Molarität) c(X) einer Lösung ist das Verhältnis aus der gelösten Stoffmenge n(X) pro Volumen V der Lösung (nicht zu verwechseln mit dem Lösungsmittel).

   n  
  c(X)  {{{ist}}}  ──  
   V  
 (1a)

Einheit der Stoffmengenkonzentration ist mol/L.

Beispiele:

  1. Die Konzentration von rauchender Salzsäure beträgt ca. 10 mol · L-1, kurz: c(HCl) = 10 mol · L-1 oder 10-molare Salzsäure. Es sind daher in genau einem Liter der Salzsäure 10 mol HCl enthalten, also 364,5 g.
  2. Die Konzentration von Natronlauge zur Herstellung von Laugengebäck ("Brezellauge") darf max. 1 mol · L-1, kurz: c(NaOH) = 1 mol · L-1. Es sind daher in genau einem Liter der Lauge 1 mol NaOH enthalten, also 40 g.

Statt Angabe der Konzentration eines Stoffes X als c(X) findet sich häufig die Schreibweise [X]:

   n  
  [X]  {{{ist}}}  ──  
   V  
 (1b)


Neben der Stoffmengenkonzentration c(X) ist auch die Angabe als Massen- bzw. Volumen-Konzentration möglich:

Massenkonzentration 𝜷

Die Massenkonzentration 𝜷 steht für das Verhältnis der Masse m eines Stoffes zum Volumen V der Lösung, in dem Stoff gelöst ist (nicht zu verwechseln mit dem Volumen des Lösungsmittels vor dem Auflösen), kurz:

   m  
  𝜷  {{{ist}}}  ──  
   V  
 (2)

Die Angabe der Massenkonzentration z. B. bei Mineralwasser erfolgt in mg/L oder bei Spurengasen in μg/m³.

Die Massenkonzentration kann auch aus der Stoffmengenkonzentration berechnet werden, siehe (5).

Massenanteil w, Massen- und Gewichtsprozent

Der Massenanteil w(X) steht für das Verhältnis der anteiligen Masse m(X) des Stoffes X zur Gesamtmasse mges des Stoffgemisches bzw. Lösung, kurz:

   m(X)  
  w(X)  {{{ist}}}  ────  
   mges  
 (3)

Durch Kürzen der Masseneinheit Gramm ergibt sich der Massenanteil als Zahl zwischen 0 und 1.

Durch Multiplizieren des Massenanteils mit 100 % erhält man die in der Praxis gebräuchliche Angabe Gewichtsprozent (Abk.: Gew.-%) bzw. Massenprozent.

Die Angabe w(X) = 1 % bedeutet, dass 1 g des Stoffes mit dem Lösemittel auf insgesamt 100 g aufgefüllt werden, Beispiel s. Salzsäure.

Volumen-Konzentration σ

Das Stoffvolumen V(X) wird zum Gesamtvolumen Vges nach Zugabe des Lösemittels ins Verhältnis gesetzt. Die Angabe der Volumen-K. σ(X) = 1 Vol.-% bedeutet, dass 1 mL des Stoffes mit dem Lösemittel auf insgesamt 100 mL aufgefüllt werden, Beispiel s. Ethanol.

   V(X) · 100%  
  σ(X)  {{{ist}}}  ────────  
   Vges  
 (4a)

Bei sehr geringen Konzentrationen sind neben den oben erwähnten K.- Angaben noch weitere in Gebrauch, z. B. 0/00 (1/1.000), ppm (1/1.000.000) o. ppb (1/1.000.000.000).

Bezieht man bei der Berechnung der Konzentration (4b) das Stoffvolumen V(X) auf das Gesamtvolumen Vges aller Komponenten vor dem Mischen, erhält man wegen des Volumenschwundes beim Mischen einen von der Volumen-Konzentration abweichenden Wert, den Volumenanteil.

Beispiel: Jeweils 50 mL Ethanol und Wasser werden sortenrein abgemessen.

Das Gesamtvolumen Vges aller Komponenten vor dem Mischen beträgt 100 mL. Mit (4b) ergibt sich ein Volumenanteil von 50%.

Beim Durchmischen zeigt sich ein Volumenschwund von ca. 5 mL, damit beträgt das Gesamtvolumen Vges nach Zugabe des Lösemittels aber nur noch 95 mL. Mit (4a) ergibt sich eine Volumen-Konzentration von 52,6% (100% · 50/95).

Umrechnungen

Massenkonzentration - Stoffmengenkonzentration

Die Angabe der Konzentration z. B. bei Trinkwasser erfolgt als Massenkonzentration 𝜷(X) in mg/L. Über die molare Masse M des gelösten Stoffes können Stoffmengenkonzentration c und Massenkonzentration 𝜷 umgerechnet werden:

   𝜷  
  c  {{{ist}}}  ──  
   M  
 (5a) bzw. 
     
  𝜷  {{{ist}}}  c · M  
     
 (5b)

Beispiele:

1) Gemäß Trinkwasserverordnung beträgt der Grenzwert der Konzentration von Chlorid 250 mg/L. Welcher Stoffmengenkonzentration entspricht dies?

c(Cl-) = 𝜷(Cl-)/M(Cl-)
c(Cl-) = 0,25 g/L / 35,453 g/mol
c(Cl-) = 7,05 mmol/L

Die max. Stoffmengenkonzentration von Chlorid gemäß Trinkwasserverordnung beträgt 7,05 Millimol pro Liter.

2) Die Stoffmengenkonzentration von Natronlauge aus dem dort genannten Beispiel beträgt 1 mol/L. Welcher Massenkonzentration entspricht dies?

𝜷(NaOH) = c(NaOH) · M(NaOH)
𝜷(NaOH) = 1 mol/L · 40 g/mol
𝜷(NaOH) = 40 g/L

Die Massenkonzentration einer 1-molaren Natronlauge beträgt 40 g/L.

Messung der Konzentration

In Abhängigkeit vom zu untersuchenden Stoff sind u.a. die folgenden Messmethoden üblich:

Im Chemiebuch ...
findest Du weitere Informationen
zum Thema Konzentration:
Chemie FOS-T

auf Seite
-

Chemie heute

auf Seite
-

Elemente Chemie

auf Seite
485, 509

Weblinks