Kettentriebe gehören zu den Zugmitteltrieben und bestehen aus metallischen Glieder, die gelenkig miteinander verbunden sind

Vorteile:


- formschlüssige und schlupffreie Leistungsübertragung
- konstante Übersetzung
- geringe Lagerbelastung
- Unempfindlichkeit gegen hohe Temperaturen, Feuchtigkeit und Schmutz
- geringer Bauraum
- kleine Umschlingungswinkel

Nachteile:

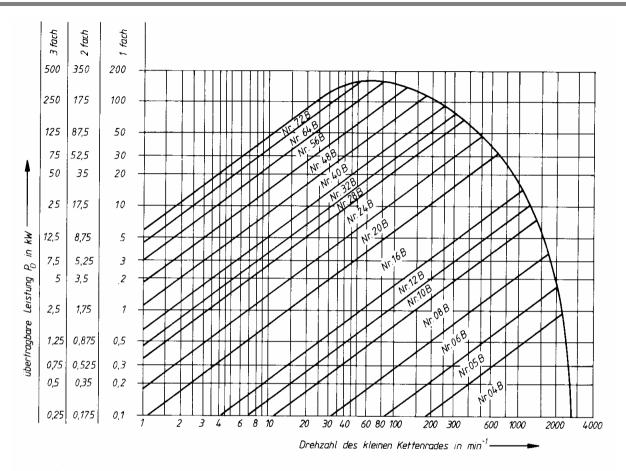
- unelastische, starre Kraftübertragung
- nur parallele Wellen
- teurer als Riementrieb
- schwingungsanfällig
- Wartungsaufwand
- Übersetzung i<10
- Polygoneffekt

Polygoneffekt

Kette umschlingt die Räder in Form eines Vielecks

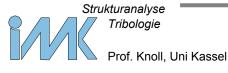
- \Rightarrow Durchmesser schwankt zwischen $d_{max} \triangleq d$ und $d_{min} \triangleq d \cdot cos(\tau/2)$
- \Rightarrow Kettengeschwindigkeit schwankt zwischen $v_{max} = v$ und $v_{min} = v \cdot cos(\tau/2)$

Polygoneffekt: Ungleichförmigkeit der Kettengeschwindigkeit


Rollenketten nach DIN 8187

Maße in mm

		:							Е	infach-Rolle	enkette	(1)	Zw	veifach-Rol	lenkette	(2)	Г	reifach-Rol	lenkette	(3)
N	ihe	p	<i>b</i> ₁	b ₂	d_1	e	<i>8</i> 1	k	a_1	Bruch- kraft ¹⁾ N	Ge- lenk- fläche	Ge- wicht kg/m	a ₂	Bruch- kraft ¹⁾ N	Ge- lenk- fläche	Ge- wicht kg/m	<i>a</i> ₃	Bruch- kraft ¹⁾ N	Ge- lenk- fläche	Ge- wicht kg/m
1	2		min.	max.	max.		max.	max.	max.	min.	cm ²	=	max.	min.	cm ²	≈ =	max.	min.	cm ²	=
	03	5	2,5	4,15	3,2	-	4,1	2,5	7,4	2 000	0,06	0,08	_	-	_	_	_	_	_	_
	04	6	2,8	4,1	4	-	5	2,9	7,4	3 000	0,07	0,12	-	_	_	-	_	-	_	_
05 B		8	3	4,77	5	5,64	7,11	3,1	8,6	4 600	0,11	0,18	14,3	8 000	0,22	0,36	19,9	11 400	0,33	0,54
06 B		9,525	5,72	8,53	6,35	10,24	8,26	3,3	13,5	9 100	0,28	0,41	23,8	17 300	0,55	0,78	34	25 400	0,83	1,18
08 B		12,7	7,75	11,3	8,51	13,92	11,81	3,9	17	18 200	0,50	0,70	31	31 800	1,00	1,35	44,9	45 400	1,50	2,0
10 B		15,875	9,65	13,28	10,16	16,59	14,73	4,1	19,6	22 700	0,67	0,95	36,2	45 400	1,34	1,85	52,8	68 100	2,02	2,8
12 B	465	19,05	11,68	15,62	12,07	19,46	16,13	4,6	22,7	29 500	0,89	1,25	42,2	59 000	1,78	2,5	61,7	88 500	2,68	3,8
	16 B	25,4	17,02	25,45	15,88	31,88	21,08	5,4	36,1	58 000	2,10	2,7	: 68	110 000	4,21	5,4	99,9	165 000	6,32	8
	20 B	31,75	19,56	29,01	19,05	36,45	26,42	6,1	43,2	95 000	2,95	3,6	79,7	180 000	5,91	7,2	116,1	270 000	8,86	11
	24 B	38,1	25,4	37,92	25,4	48,36	33,4	6,6	53,4	170 000	5,54	6,7	101,8	324 000	11,09	13,5	150,2	! 484 000	16,64	21
	28 B	44,45	30,99	46,58	27,94	59,56	37,08	7,4	65,1	200 000	7,40	8,3	124,7	381 000	14,81	16,6	184,3	571 000	22,21	25
	32 B	50,8	30,99	45,57	29,21	58,55	42,29	7,9	67,4	260 000	8,11	10.5	126	495 000	16,23	21	184,5	743 000	24,34	32
	40 B	63,5	38,1	55,75	39,37	72,29	52,96	10,2	82,6	360 000	12,76	16	154,9	680 000	25,52	32	227,2	1 000 000	38,28	48
	48 B	76,2	45,72	70,56	48,26	91,21	63,88	10,5	99,1	560 000	20,63	: 25	190,4	1 000 000	41,26	50	281,6	1 600 000	61,89	75
	56 B	88,9	53,34	81,33	53,98	106,6	77,85	11,7	114,6	. 850 000	27,91	35	221,2	1 600 000	55,82	70	330	2 350 000	83,73	105
	64 B	101,6	60,96	92,02	63,5	119,98	90,17	13	130,9	1 100 000	36,25	60	250,8	2 100 000	72,5	120	370,7	3 100 000	108,75	180
	72 B	114,3	68,58	103,81	72,39	136,27	103,63	14,3	147,4	1 400 000	46,17	80	283,7	2 700 000	92,34	160	420	4 000 000	138,5	240



Leistungsdiagramm nach DIN 8195 für Rollenketten nach DIN 8187

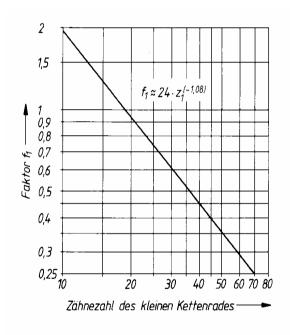
Anmerkung: Die oberen Begrenzungslinien gelten für Kettentriebe mit $z_1 = 19$ Zähnen, X = 100 Gliedern, Übersetzung i = 3 und $t_h = 15$ 000 Betriebsstunden

Die Linien im Leistungsdiagramm stellen die obere Grenze für den Kettentrieb dar.

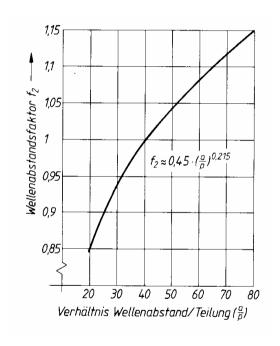
Diagrammleistung

$$P_D = \frac{c_B \cdot P_1 \cdot f_1}{(f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6)} \qquad P_1 = \frac{P_2}{\eta}$$

P_{D}	Diagrammleistung
P_1	Antriebsleistung
$c_{\scriptscriptstyle B}$	Betriebsfaktor zur Berücksichtigung der Betriebsbedingungen
f_1	Faktor zur Berücksichtigung der Zähnezahl des kleinen Kettenrades
f_2	Faktor zur Berücksichtigung der unterschiedlichen Wellenabstände
<i>f</i> ₃	Faktor zur Berücksichtigung der Kettengliedform
f_4	Faktor zur Berücksichtigung der überlaufenden Kettenräder
f ₅	Faktor zur Berücksichtigung der Lebensdauer
<i>f</i> ₆	Faktor zur Berücksichtigung der Umweltbedingungen



Betriebsfaktor zur Berücksichtigung der Betriebsbedingungen c_B


Art der Maschine bzw. des Bauteiles (Beispiele)	Kennzeichnende Arbeitsweise	Art der Stöße	Betriebsfaktor c _B	
Elektrische Maschinen, Turbinen, Gebläse, Schleifmaschinen	gleichförmig umlaufende Bewegungen	leicht	1,0 1,1	
Brennkraftmaschinen, Kolbenverdichter, Hobelmaschinen, Stoßmaschinen	hin- und hergehende Bewegungen	mittel	1,2 – 1,5	
Pressen, Steinbrecher, Walzenständer	hin- und hergehende, stoßhafte Bewegungen	stark	1,6 2,0	
Hämmer, Steinbrecher, Walzenständer	schlagartige Bewegungen	sehr stark	23,5	

Zähnezahlfaktor

Wellenabstandsfaktor

Faktoren f_3 - f_5

Faktor zur Berücksichtigung der Kettengliedform f₃

Ketten mit gekröpftem Verbindungsglied ansonsten

$$f_3 = 0.8$$

 $f_2 = 1.0$

Faktor zur Berücksichtigung der überlaufenden Räder f₄

$$f_4 = 0.9^{(n-2)}$$

n Anzahl der Kettenräder

Faktor zur Berücksichtigung der Lebensdauer f₅

$$f_5 = \left(\frac{15000}{L_h}\right)^{\frac{1}{3}}$$

nur bei einer von L_h =15000 h abweichenden Lebensdauer

Umweltbedingungen	f ₆
Staubfrei und beste Schmierung	1
Staubfrei und ausreichende Schmierung	0,9
Nicht staubfrei und ausreichende Schmierung	0,7
Nicht staubfrei und Mangelschmierung	0.5 für $v \le 4$ m/s
Schmutzig und Mangelschmierung	0,3 für $v = 4 7$ m/s 0,3 für $v \le 4$ m/s 0,15 für $v = 4 7$ m/s
Schmutzig und Trockenlauf	$0.15 \text{ für } \upsilon \le 4 \text{ m/s}$

Berechnung der Gliederzahl (bei 2 Zahnrädern)

günstigster Wellenabstand liegt bei

$$a = (30 \dots 50) \cdot p$$

angenäherte Gliederzahl

$$X_0 = 2 \cdot \frac{a_0}{p} + \frac{z_1 + z_2}{2} + \left(\frac{z_2 - z_1}{2 \cdot \pi}\right)^2 \cdot \frac{p}{a_0}$$

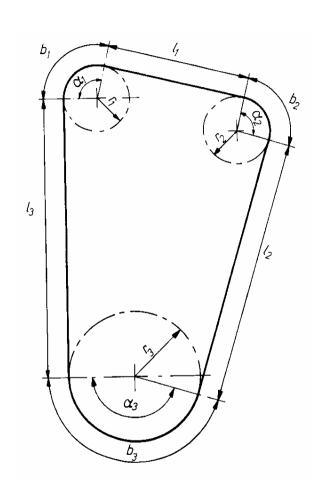
tatsächlicher Wellenabstand

$$a = \frac{p}{4} \cdot \left[\left(X - \frac{z_1 + z_2}{2} \right) + \sqrt{\left(X - \frac{z_1 + z_2}{2} \right)^2 - 2 \cdot \left(\frac{z_2 - z_1}{\pi} \right)^2} \right]$$

Berechnung der Gliederzahl (bei mehr als 2 Zahnrädern)

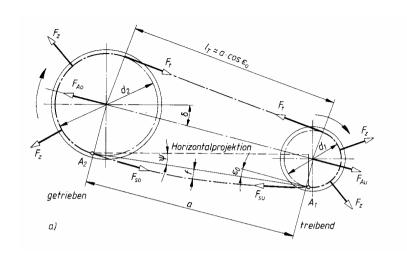
Addition der Teillängen

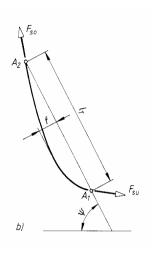
$$L = I_1 + I_2 + ... + b_1 + b_2 + ...$$


erforderliche Gliederzahl der Kette

$$X = \frac{L}{p}$$

I₁, I₂ Teillängen

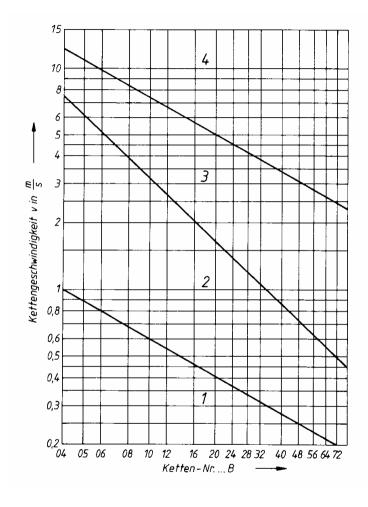

 b_1, b_2 Bogenlängen


$$b_{x} = \frac{d_{x}}{2} \cdot \alpha_{x}$$

Durchhang des Kettentrums

Der Durchhang f des Leertrums ist der Abstand des am weitesten durchhängenden Kettengliedes von der geraden Verbindung der beiden Aufhängepunkte.

$$f_{rel} = \frac{f}{I_t}$$
; $f_{rel}^* = \frac{f}{I_t} \cdot 100$ [in %]


Sollte im Normalfall 1...3% betragen, um zusätzliche Kettenbelastungen zu vermeiden

f Durchhang des Leertrums

I_t Länge des gespannten Leertrums

Schmierung der Kette

Kettengeschwindigkeit

$$\mathbf{v} = \mathbf{d} \cdot \boldsymbol{\pi} \cdot \mathbf{n}$$

- 1 Ölzufuhr durch Ölkanne oder Pinsel
- 2 Tropfschmierung
- 3 Ölbad oder Schleuderscheibe
- 4 Druckumlaufschmierung, gegebenenfalls mit Filter und Ölkühler

- Kettenzugkraft F_t im Lasttrum; wird im Betriebszustand von zusätzlichen Kräften überlagert, die sich aus der Eigenart des Kettentriebes ergeben.
- Fliehzug F_Z
 ist Gegenkraft zur Fliehkraft im Last- und Leertrum und darf ab
 Kettengeschwindigkeiten v > 7m/s nicht mehr vernachlässigt werden
- Stützzug F_s muss besonders bei größeren Kettenteilungen und längeren , nicht abgestützten Trums beachtet werden
- Wellenbelastung F_W
- resultierende Betriebskraft F_{ges} im Lasttrum

Kettenzugkraft F,

$$F_t = \frac{P_1}{V} = \frac{2 \cdot T_1}{d_1}$$

Kettengeschwindigkeit V

Antriebsmoment T_1

 d_1 Teilkreisdurchmesser des Antriebsrades

Fliehzug F_Z $F_Z = q \cdot v^2$

$$F_7 = q \cdot v^2$$

Kettengeschwindigkeit V

Stützzug F_s

(bei $\Psi \approx 0^{\circ}$, d.h. bei annähernd waagerechter Lage des Leertrums)

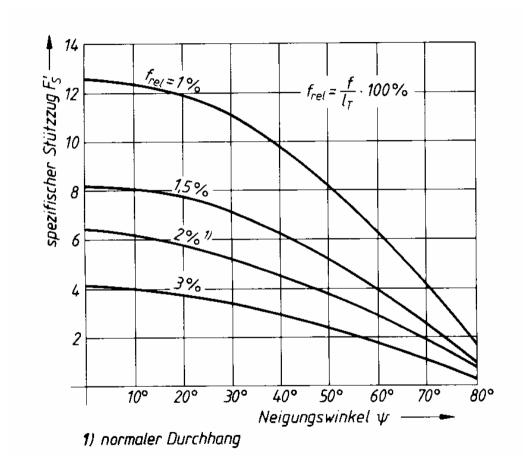
$$F_s \approx \frac{F_G \cdot I_T}{8 \cdot f} = \frac{q \cdot g \cdot I_T}{8 \cdot f_{rel}}$$

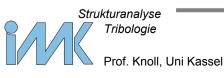
f Durchhang der Kette

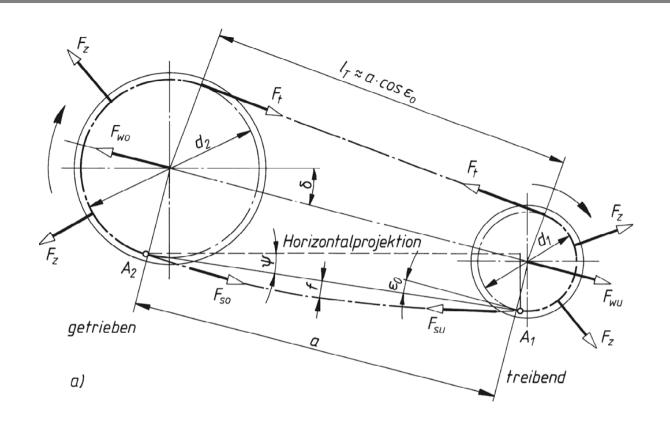
f_{rel} relativer Durchhang

Stützzug F_s

(bei $\Psi > 0^{\circ}$, d.h. bei geneigter Lage des Leertrums)


$$F_{so} \approx q \cdot g \cdot I_{\tau} \cdot (F_{s}' + \sin \Psi)$$


$$F_{su} \approx q \cdot g \cdot I_T \cdot F_s$$


Stützzug am unteren Kettenrad

F'_s spezifischer Stützzug

$$\varepsilon_0 = \arcsin\left(\frac{\left(d_2 - d_1\right)}{2 \cdot a}\right)$$

Wellenbelastung F_w

(bei $\Psi \approx 0^{\circ}$, d.h. bei annähernd waagerechter Lage des Leertrums)

$$F_W \approx F_t \cdot c_B + 2 \cdot F_S$$

Wellenbelastung F_W

(bei $\Psi > 0^{\circ}$, d.h. bei geneigter Lage des Leertrums)

$$F_{Wo} \approx F_t \cdot c_B + 2 \cdot F_{So}$$

$$F_{wu} \approx F_t \cdot c_B + 2 \cdot F_{Su}$$

resultierende Betriebskraft F_{ges} (bei $\Psi \approx 0^{\circ}$, d.h. bei annähernd waagerechter Lage des Leertrums)

$$F_{ges} = F_t \cdot C_B + (F_z + F_S)$$

resultierende Betriebskraft F_{ges} (bei $\Psi > 0^{\circ}$, d.h. bei geneigter Lage des Leertrums)

$$F_{\text{ges}} = F_t \cdot C_B + (F_z + F_{\text{So}})$$

